Ethnopharmacological relevanceBased on ancient records and previous studies, many parts of Rhus chinensis Mill., including the fruits, have good preventive and therapeutic effects on inflammation, malaria, diarrhea, and gastrointestinal diseases. Rhus plants and Galla chinensis produced from R. chinensis leaves can also prevent or cure intestinal diseases. However, the preventive effect and molecular mechanisms of R. chinensis fruits on necrotizing enterocolitis (NEC) have not been comprehensively studied. Aim of the studyThis article aims to estimate the effect of the 80% ethanol extract of R. chinensis fruits (RM) on alleviating NEC in rat pups and illustrate the potential molecular mechanisms. Materials and methodsRat pups were subjected to formula feeding, intermittent hypoxic, and cold stresses to establish the NEC model. The preventive effects of RM on NEC were evaluated through survival rate; clinical sickness index; macroscopic conditions; histopathology; and expression levels of inflammatory markers (i.e., tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6]), oxidative stress indicators (i.e., total antioxidant status [TAS], total oxidant status [TOS], superoxide dismutase [SOD], glutathione peroxidase [GSH-Px], myeloperoxidase [MPO], malondialdehyde [MDA]), and tight junction proteins (i.e., Zonula Occludens 1 [ZO-1], Occludin). Moreover, the expression levels of several key proteins involved in oxidative stress (i.e., nuclear factor erythroid 2-related factor 2 [Nrf2], NAD(P)H–quinone oxidoreductase-1 [NQO1]), inflammation (i.e., Toll-like receptor 4 [TLR4], phosphorylated-nuclear factor kappa-B [p-NF-κB], inducible nitric oxide synthase [iNOS]), and apoptosis (i.e., cleaved cysteinyl aspartate specific proteinase-3 [cleaved Caspase-3], Bcl-2-associated X [Bax], B-cell lymphoma-2 [Bcl-2]) in intestinal tissues were analyzed to clarify the molecular mechanisms. ResultsThe extract particularly high doses (400 mg RM/kg body weight) could remarkably reduce the mortality and clinical sickness score and improve the macroscopic condition and histopathological injury of the intestine in NEC pups. After RM administration, the levels of TOS, TNF-α, IL-6, MPO, and MDA in the bowel tissue decreased, whereas the levels of TAS, SOD, and GSH-Px were significantly enhanced. The expression levels of ZO-1 and Occludin proteins were dramatically augmented in RM-treated groups to maintain intestinal barrier integrity. Further analyses revealed that RM might prevent NEC pups by improving some pivotal proteins involved in oxidative stress, inflammation, and apoptosis of enterocytes, namely, by down-regulating the levels of TLR4, p-NF-κB, iNOS, cleaved Caspase-3, and Bax and up-regulating the levels of Bcl-2, NQO1, and Nrf2. ConclusionsThe RM prevented the intestinal inflammation and damage caused by NEC by regulating the expression of several pivotal proteins involved in oxidative stress, inflammation, and apoptosis. This study might provide a scientific basis for R. chinensis fruits as a traditional herbal medicine to prevent and/or alleviate NEC.