A hybrid quantum mechanics/molecular mechanics setup was used to model electronically excited pentacene in the crystal phase. Particularly interesting in the context of singlet fission (SF) is the energetic location of the antiferromagnetically coupled multiexcitonic singlet state, 1(TT), and the ferromagnetically coupled analog in relation to the optically bright singlet state. To provide photophysical properties of the accessible spin manifold, combined density functional theory and multi-reference configuration interaction calculations were performed on pentacene dimers and a trimer, electrostatically embedded in the crystal. The likelihood of a quintet intermediate in the SF process was estimated by computing singlet-quintet electron spin-spin couplings employing the Breit-Pauli Hamiltonian. The performance of the applied methods was assessed on the pentacene monomer. The character of the optically bright state and the energetic location of the 1(TT) state depend strongly on the relative orientation of the pentacene units. In the V-shaped dimers and in the trimer, the optically bright state is dominated by local and charge transfer (CT) excitations, with admixtures of doubly excited configurations. The CT excitations gain weight upon geometry relaxation, thus supporting a CT-mediated SF mechanism as the primary step of the SF process. For the slip-stacked dimer, the energetic order of the bright and the 1(TT) states swaps upon geometry relaxation, indicating strong nonadiabatic coupling close to the Franck-Condon region-a prerequisite for a coherent SF process. The multiexcitonic singlet, triplet, and quintet states are energetically too far apart and their spin-spin couplings are too small to bring about a noteworthy multiplicity mixing.