Abstract

Due to their unique photophysical and electronic properties, pyrene and its analogues have been the subject of extensive research in recent decades. The propensity of pyrene and its derivatives to form excimers has found wide application in various fields. Nitrogen-substituted pyrene derivatives display similar photophysical properties, but for them, excimer emission has not been reported to date. Here, we use time-dependent density functional theory (TD-DFT) calculations to investigate the low-lying exciton states of dimers of pyrene and 2-azapyrene. The excimer equilibrium structures are determined and the contribution of charge transfer (CT) excitations and intermolecular interactions to the exciton states is disclosed using a diabatization procedure. The study reveals that the dimers formed by the two molecules have quite similar exciton-state patterns, in which the relevant CT contributions govern the formation of excimer states, along with the La/Lb state inversion. In contrast with pyrene, the dipole-dipole interactions in 2-azapyrene stabilize the dark eclipsed excimer structure and increase the barrier for conversion into a bright twisted excimer. It is suggested that these differences in the nitrogen-substituted derivative might influence the excimer emission properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.