Abstract

The GW electron–hole interaction kernel, which includes two second-order exchange terms in addition to the first-order direct and exchange terms considered in the conventional GW + Bethe–Salpeter method, is applied to 10 two-molecular systems and six thermally activated delayed fluorescence (TADF) molecules in which inter- and intramolecular charge transfer excitations are expected to occur. The contributions of the two second-order exchange terms are almost zero for intermolecular charge transfer excitations and ∼0.75 eV for intramolecular charge transfer excitations according to our exciton analysis method with exciton wave functions. For TADF molecules, we found that the second-order exchange terms are more significant than the first-order exchange terms, and the contributions—even for local-type and delocalized-type excitations—are not negligibly small. We revealed that the two second-order exchange terms are proportional to the molecular size, the exciton binding energy, and the electron–hole overlap strength for intramolecular charge-transfer excitations. We believe that our findings are indispensable for further considerations of the GW method in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.