The [M4 -Hal]- (M=the title compound; Hal=Cl, Br, and I) complexes were isolated in the form of salts of [Et4 N]+ cation and characterized by XRD, NMR, UV-Vis, DFT, QTAIM, EDD, and EDA. Their stoichiometry is caused by a cooperative interplay of σ-hole-driven chalcogen (ChB) and hydrogen (HB) bondings. In the crystal, [M4 -Hal]- are connected by the π-hole-driven ChB; overall, each [Hal]- is six-coordinated. In the ChB, the electrostatic interaction dominates over orbital and dispersion interactions. In UV-Vis spectra of the M+[Hal]- solutions, ChB-typical and [Hal]- -dependent charge-transfer bands are present; they reflect orbital interactions and allow identification of the individual [Hal]- . However, the structural situation in the solutions is not entirely clear. Particularly, the UV-Vis spectra of the solutions are different from the solid-state spectra of the [Et4 N]+ [M4 -Hal]- ; very tentatively, species in the solutions are assigned [M-Hal]- . It is supposed that the formation of the [M4 -Hal]- proceeds during the crystallization of the [Et4 N]+ [M4 -Hal]- . Overall, M can be considered as a chromogenic receptor and prototype sensor of [Hal]- . The findings are also useful for crystal engineering and supramolecular chemistry.
Read full abstract