Abstract

Bacterial DNA phosphorothioation (PT) physiologically and stereo-specifically replaces a non-bridging oxygen in a phosphate link with a sulfur atom, which can be recognized by a highly conserved sulfur-binding domain (SBD). Here we conducted thermodynamic integration (TI), molecular dynamics simulation, and quantum chemical calculations to decipher the specific molecular interactions between PT-DNA and SBD in Streptomyces coelicolor type IV restriction enzyme ScoMcrA. The TI-calculated binding affinity of (5'-CCGRp-PSGCCGG-3')2 is larger than that of (5'-CCGGCCGG-3')2 by about 7.4-7.7 kcal mol-1. The binding difference dominantly stems from hydration energy of non-phosphorothioate DNA (9.8-10.6 kcal mol-1) in aqueous solution, despite the persistent preference of 2.6-3.2 kcal mol-1 in the DNA-SBD MD simulations. Furthermore, the quantum chemical calculations reveal an unusual non-covalent interaction in the phosphorothioate-binding scenario, where the PS⋯NP165 chalcogen bond prevails the PS⋯HCβ vdW interactions from the adjacent residues H116-R117-Y164-P165-A168. Thus, the chalcogen-hydrophobic interaction pulls PT-DNA into the SBD binding pocket while the water cage pulls a normal DNA molecule out. The synergetic mechanism suggests the special roles of the proline pyrrolidine group in the SBD proteins, consistent with the experimental observations in the X-ray crystallography and structural bioinformatics analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.