Abstract

Formal substitution of the oxygen atom of an iso-tellurazole N-oxide with deprotonated (ortho, meta, and para)-hydroxyphenyl groups generated molecules that readily aggregate through Te···O chalcogen bonding (ChB) interactions. The molecules undergo autoassociation in solution, as shown by variable temperature (VT) 1H NMR experiments and paralleling the behavior of iso-tellurazole N-oxides. Judicious adjustment of crystallization conditions enabled the isolation of either polymeric or macrocyclic aggregates. Among the latter, the ortho compound assembled a calixarene-like trimer, while the para isomer built a macrocyclic tetramer akin to a molecular square. The Te···O ChB distances in these structures range from 2.13 to 2.17 Å, comparable to those in the structures of iso-tellurazole N-oxides. DFT calculations estimate that the corresponding Te···O ChB energies are between -122 and -195 kJ mol-1 in model dimers and suggest that macrocyclic aggregation enhances these interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call