Decentralized energy generation (DEG) system which characterizes local power generation and utilization are recently getting more attention in energy system planning and implementation because it produces cleaner energy from renewable resources and is capable to avoid significant energy losses during the power transfer from the centralized power plants. These DEGs are however scattered in locations and have intermittent power supply, making it difficult to self-sustain. In this study, a novel integrated energy system consisting of multiple DEGs connected to the existing CEG is proposed. New aspects that are included in the model include the distribution and transmission losses as well as impact of operating load on the heat rate of power plants. Energy storage system were also modelled to operate within the DEG and CEG network. Through a case study demonstration, the capacities of the integrated system were optimized using superstructure-based mixed integer non-linear programming (MINLP) mathematical modelling. The system was also optimized based on economic and energy efficiency to study the effects and trade-off between the two parameters. The results revealed that the optimal system can be obtained with levelized cost of electricity of MYR 0.44/kWh. The result also revealed that biomass and wind energy favours industrial users.
Read full abstract