Abstract: Heterocyclic compounds are the most common and diverse group of organic substances. Heterocyclic compounds are rapidly increasing in number as a result of intensive synthetic research as well as their value in other synthetic procedures. More than 90% of medications contain heterocyclic rings, and a wide range of medicinal chemistry applications make use of these substances. There are always unique characteristics of an efficient approach for creating newly discovered heterocyclic compounds and their moieties. Due to their biological effects, including those that are anti-cancer, anti-inflammatory, anti-fungal, anti-allergic, antibacterial, antiviral, and anticonvulsant, heterocyclic compounds are crucial to medicinal chemistry. Today's world population is generally suffering from various neurodegenerative diseases. Out of that, the most prevailing disease is Alzheimer's. There are many causes of Alzheimer's disease-like acetylcholinesterase enzyme, tau protein, amyloid aggregation, oxidative stress, phosphodiesterase, and others. In these cases, oxidative stress plays a very important role in the progression of this disease. To combat this oxidative stress various antioxidant-derived drugs have been used but the problem is that Alzheimer's progression cannot be targeted with a single target drug because of the other factors that are involved in its progression. So to overcome that, a drug targeting multiple targets has been synthesized by using the antioxidant in previous reports. These drugs are more potent and efficacious than single-target drugs. This review focused on various multi-target ligands to target oxidative stress.