Abstract

Aggregation of amyloid-β peptide (Aβ) is hypothesized to be the primary cause of Alzheimer's disease (AD) progression. Aβ aggregation has been widely studied using conventional sensing tools like emission fluorescence, electron microscopy, mass spectroscopy, and circular dichroism. However, none of these techniques can provide cost-efficient, highly sensitive quantification of Aβ aggregation kinetics at the molecular level. Among the influences on Aβ aggregation of interest to disease progression is the acceleration of Aβ aggregation by acetylcholinesterase (AChE), which is present in the brain and inflicts the fast progression of disease due to its direct interaction with Aβ. In this work, we demonstrate the ability of a biological nanopore to map and quantify AChE accelerated aggregation of Aβ monomers to mixed oligomers and small soluble aggregates with single-molecule precision. This method will allow future work on testing direct and indirect effects of therapeutic drugs on AChE accelerated Aβ aggregation as well as disease prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.