In this study, microstructural improvement of cementitious composites was achieved by bacterial CaCO3 precipitation using three bacterial species, namely Sporosarcina pasteurii, Bacillus cereus, and Actinobacteria sp. M135-3, respectively. The final product was comparatively investigated regarding the physical effects of urease activity of different cells on the mortar in the long term.Microstructural improvement was determined by evaluating the pore structure by determining the increase in strength, decrease in water absorption, and capillary water absorption rate of the cement mortars having different microorganism concentrations (106-109 bacteria/ml). These measurements were taken on bacteria-containing and control samples on the 2nd, 7th, 28th, and 56th days, respectively. In addition, calcite and vaterite as calcium carbonate polymorphs formed by the precipitation of calcium carbonate by three types of bacteria were identified by Scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM/EDS), X-ray diffraction (XRD)and Thermogravimetric analysis - Differential scanning calorimetry (TGA-DSC) analyzes.The bacteria-containing mortar samples showed that bacterial species and concentrations directly affect cementitious composites' mechanical and physical properties. Composite samples containing bacteria resulted in statistically significant microstructural improvements measured by higher mechanical strength, lower water absorption value, and capillary water absorption rate compared to control samples, especially at early ages. However, the effect of microbial calcite formation diminishes at later ages, especially at 56-days, attributed to the bacteria cells losing their vitality and integrity and forming spaces inside the mortars.
Read full abstract