Abstract

Quantification and scientific observations of the fate and transport of dissolved strontium in water systems, particularly cold climate water systems, are severely lacking. In this work, in an experiment conducted at a temperature of 6 °C, the observation of strontium precipitation along with calcium carbonate minerals from cold wastewater is investigated. ICP-MS is used for metal analyses where the distribution of the species and saturation state of minerals along with a surface complexation model was performed using the public-use USGS geochemical modeling software, PHREEQC (PH Redox Equilibrium (in C language)). Sample media were analyzed using XPS and Raman spectroscopy. The results suggest that the loss of strontium from natural waters is via the process of co-precipitation with calcite, a calcium carbonate polymorph. The observations and findings are intended to be useful to quantify the loss of 90Sr from the water, in the case of an unplanned release from a nuclear reactor-operated facility. The results indicate that the precipitation model is a robust and reliable approach to predicting and monitoring the behaviour and transport of strontium that may occur in natural environments as a result of an accidental nuclear release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call