Abstract

Synthesized cement systems made with variable C3A/C4AF ratios, containing C3S, gypsum and, optionally, calcite, were stored long-term at humid conditions at 5 or 20 °C, without any protection against atmospheric carbonation. Analytical techniques able to assess both the crystalline and amorphous phases were used. Experimental results were compared with thermodynamic simulations. The systems with C3A/C4AF < 1 better preserved the soundness of the CSH phase, which hosted iron, and prevented thaumasite formation. The addition of calcite in these systems inhibited carbonation. When occurred (mixtures without calcite), the carbonation was significantly more intense at ambient temperature. In the systems that underwent extensive deterioration, cross-linking of silicate structures, AFt decomposition, and iron release from the deteriorating CSH, occurred, while Al-incorporating amorphous silica, calcium carbonate polymorphs and hydrous iron oxide formed. The presence of unreacted C3A in the systems with C3A/C4AF = 1, suggested that CSH decomposition was contributed by available sulfates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call