The most important factor affecting performance and longevity of hip joint and knee implants is the wear rate of the ultra-high-molecular-weight polyethylene (UHMWPE) component. UHMWPE wear debris has been linked to complications including tissue inflammation, bone loss (osteolysis) and implant loosening. Reduction of debris has been addressed by investigating new polyethylene formulations, manufacturing and finishing processes, including surface treatments and coatings both on plastic and metallic components. There have been many studies on the effect of surface treatments and hard coatings on cobalt chromium and titanium alloys for prosthetic applications. However, most of them have used laboratory tribo-testers without much correlation to articulating movements in human joints. In this work, hard coatings (TiN and DLC) and surface treatments (nitrogen ion implantation) have been investigated as potential candidates to reduce wear of UHMWPE, when applied on the counter face cobalt chromium alloy. Also the effect of applying nitrogen ion implantation on the UHMWPE surface itself has been investigated. To evaluate wear performance a special knee wear simulator has been used with a combined rolling-sliding movement that corresponds to the most unfavourable situation in the knee. As testing materials, conventional coated and uncoated Co–Cr as well as Al 2O 3 femoral heads were used against UHMWPE plates to obtain comparative data. Testing was carried out at 50 MPa using distilled water at 37±2°C as a lubricant. Wear measurements on UHMWPE were made following ASTM F732 standard by weight loss measurements and also by laser profilometry. The results, up to 5 million wear cycles that represent approximately 3 years of implant life, clearly have demonstrated the beneficial effects of diamond-like carbon (DLC) and ion implantation (both on Co–Cr and UHMWPE) in reducing wear of UHMWPE. Similar values were also obtained for Al 2O 3 ceramic material. A wear reduction up to approximately five times was obtained by the former materials, in comparison with the uncoated control specimen. However, the ion plated TiN coating increased significantly wear on the UHMWPE. Transference of UHMWPE to the ball was very evident with the uncoated control and TiN coated Co–Cr, as observed by SEM, but with DLC and the ceramic material this occurred to a much lesser extent. Some micro-delamination at the worn surface of the UHMWPE was observed when wearing against uncoated Co–Cr, but was not clear in the rest options. Ion implantation and DLC can thus be two good candidate treatments to reduce wear of UHMWPE in cobalt chromium knee and hip joint implants in substitution of a more expensive ceramic material. This DLC has passed all biocompatible tests in accordance with FDA regulations and ISO 10993 standards for implantable devices. An example of a uniformly DLC coated femoral head and knee implant is shown.
Read full abstract