Abstract

ABSTRACTSiC/Si heterostructures were synthesized by high dose carbon implantation into silicon using a metal vapor vacuum arc ion source. Their electron field emission properties were studied and correlated with results from other characterization techniques including atomic force microscopy (AFM), conducting AFM, Fourier transform infrared absorption spectroscopy, x-ray diffraction and photoelectron spectroscopy. It is clearly demonstrated that there are two types of field enhancement mechanisms responsible for the improvement of the electron field emission properties of these ion beam synthesized SiC/Si heterostructures, namely, the surface morphology effect and the local electrical inhomogeneity effect. The dependence of the FE properties on the carbon implant dose and thermal annealing conditions could be understood in terms of these two field enhancement mechanisms. It is also demonstrated that improvement in the FE properties can be achieved by implanting tungsten ions into these SiC/Si heterostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call