Abstract This paper illustrates how the fracture energy of a tensile strip made of unfilled and 25 phr carbon black-filled natural rubber varies with far-field strain rate in the range 0.01–71 s−1. Quasistatic and dynamic fracture tests were performed at room temperature with an electromechanical INSTRON machine, a servo-hydraulic MTS machine, and Charpy tensile apparatus, respectively. It was found that the fracture energy of the unfilled natural rubber did not vary significantly over the range of sample strain rate, but there was significant variation in the fracture energy of the 25 phr carbon black-filled natural rubber from 0.01 to 71 s−1 sample strain rate. The fracture energy of the 25 phr carbon black-filled natural rubber at a sample strain rate of 0.1 s−1 was about three times greater than it was at the 10 s−1 sample strain rate. While the carbon black fillers increased the fracture energy of natural rubber by about 200% at quasistatic sample strain rates (0.01–0.1 s−1) and at 71 s−1, the carbon black fillers did nothing to improve the fracture energy of natural rubber at sample strain rates between 5 and 29 s−1. In this strain rate range, the fracture energy of 25 phr carbon black-filled natural rubber was almost the same as that in the unfilled natural rubber. The variation in the fracture energy with far-field strain rate was due to changes in the material behavior of natural rubber at high strain rates. Finite element analysis using a high-strain-rate constitutive equation for the 25 phr carbon black rubber specimen was used to calculate the fracture energy of the specimen at a sample strain rate of 55 s−1, and good agreement was found between the test and finite element results.
Read full abstract