Abstract Efforts are made to elucidate a comprehensive analysis of entrainment dynamics triggered by a couple of unequal rotational fluxes within a viscous pool. Cylindrical rollers are employed to establish the rotational field. The top drum is equally submerged in both phases and also it provides a constant rotational inertia. Concomitantly, the bottom roller is completely submerged in the viscous bath, and it provides an unequal rotational strength in reference to top roller. The average rotational strength of both rollers is measured using average Capillary number (Caavg). The entrainment phenomenon is strongly influenced by both Caavg and gap between the rollers (W/D). Characterization of entrained filament is elucidated by predicting the horizontal distance (L*), radial distance (r*), temporal vertical displacement (Y*), maximum vertical displacement (Ymax*), width (H*), and location of V-shaped diversion (Øs*). Characterization of liquid tip is performed by measuring the travel rate (γ*) along periphery of drum from receding to advancing junction. Air mass ejection from filament tip is analyzed by estimating the first bubble ejection time (t1st*), volume of accumulated of ejected gaseous masses (v*), and ejection frequency (f). Furthermore, the effect of gravitational pull (specified by Archimedes number, Ar) and viscous drag (measured by Morton number, Mo) on the pattern of entrained air filament is described. Lastly, an analytical framework is established to determine the width of the V-junction by balancing the important influencing forces, which are strongly affecting the filament. Analytical observations show a satisfactory agreement with numerical findings.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
6007 Articles
Published in last 50 years
Articles published on Capillary Number
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
5860 Search results
Sort by Recency