Abstract
Bubble deformation and breakup due to strain-rate-induced stress is investigated for a laminar flow configuration. The bubble shape is assumed to be a prolate ellipsoid. A new model for bubble deformation under dynamic load is introduced in the form of an ordinary differential equation for the deformation energy. Breakup is identified with a critical value of the deformation. As an application case, the flow in a joining T-junction is considered with the ratio of the volume flow rate being unity and the outflow Reynolds number being 1800. Dilute, dispersed bubbles with a diameter of 0.5 mm are injected. High-speed shadowgraphy is used and bubble parameters are evaluated via image processing. The capillary number is obtained from a single-phase flow simulation providing the instantaneous shear rate at the position of the bubble. The deformation resulting from the proposed model is then compared with the measured deformation for an exemplary bubble trajectory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.