Abstract
Hydraulic measures such as hydraulic slotting and hydraulic fracturing are commonly used in coal seam pressure relief and permeability enhancement. Two-phase flow patterns of CH4–water in pore-sized coal seams after hydraulic measures are critical to improve gas extraction efficiency. The phase field module in COMSOL Multiphysics™ 5.4 and the classical ordered porous media model were used in this paper. The characteristics of CH4–water two-phase immiscible displacement in coal seams under different capillary numbers (Ca) and viscosity ratios (M) were simulated and quantitatively analyzed. By changing the contact angle of the porous media, the flow patterns of CH4–water two-phase in coal with different wettability were simulated. Results show that wettability significantly affects the displacement efficiency of CH4. Additionally, by constructing a dual-permeability model to simulate the varying local permeability of the coal, the flow patterns of different Ca and M in dual-permeability media were further investigated. It is found that CH4 preferentially invades high-permeability regions, and the displacement efficiency in low-permeability regions increases with higher Ca and M, providing a reference for gas extraction from coal seams after hydraulic measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.