Though their small size, ponds play a disproportionately crucial role in eliminating nitrogen (N) transporting to downstream freshwaters. As significant water infrastructures, ponds are non-sustainable due to loss of storage capacity resulting from sedimentation. However, the effects of pond sedimentation on N removal is widely neglected in landscape N processing. The NUFER (Nutrient flows in Food chains, Environment and Resources use) model was employed to estimate N runoff from 1960 to 2018. We reconstructed the dynamic of number and storing capacity of about 14 million ponds due to construction and sedimentation from 1960 to 2018, projecting these trends into the year 2060. Our approach incorporated first-order kinetic reactions, including water residence time (HRT), to estimate N removal of ponds, utilizing data 6 monitoring ponds and 81 ponds from literature studies. Our analysis reveals a fourteen-fold increase in N runoff over the past six decades, rising from 0.8 Mt N in 1960 to 11.4 Mt N in 2018. Due to the initial rapid expansion of ponds, N removal by ponds increased from 6.4 % in 1960 to 13.6 % in 1990. Sedimentation is prevalent in ponds, particularly in small ponds with a sedimentation accumulation rate of 2.96 cm yr−1. Pond sedimentation, which reduces HRT, resulted in a decrease in pond N removal percentage to 11.2 % in 2018 and a projected 7.4 % by the year 2060, assuming similar sediment accumulation rates persist in the future. Overall, our findings underscore the non-negligible role of ponds as landscape nodes in N cycling. Urgent mitigation measures are needed to extend the lifetime of existing ponds and sustain their critical role in water quality management.
Read full abstract