BackgroundIt has been descriptively argued that the case fatality risk (CFR) of coronavirus disease (COVID-19) is elevated when medical services are overwhelmed. The relationship between CFR and pressure on health-care services should thus be epidemiologically explored to account for potential epidemiological biases. The purpose of the present study was to estimate the age-dependent CFR in Tokyo and Osaka over time, investigating the impact of caseload demand on the risk of death.MethodsWe estimated the time-dependent CFR, accounting for time delay from diagnosis to death. To this end, we first determined the time distribution from diagnosis to death, allowing variations in the delay over time. We then assessed the age-dependent CFR in Tokyo and Osaka. In Osaka, the risk of intensive care unit (ICU) admission was also estimated.ResultsThe CFR was highest among individuals aged 80 years and older and during the first epidemic wave from February to June 2020, estimated as 25.4% (95% confidence interval [CI] 21.1 to 29.6) and 27.9% (95% CI 20.6 to 36.1) in Tokyo and Osaka, respectively. During the fourth wave of infection (caused by the Alpha variant) in Osaka the CFR among the 70s and ≥ 80s age groups was, respectively, 2.3 and 1.5 times greater than in Tokyo. Conversely, despite the surge in hospitalizations, the risk of ICU admission among those aged 80 and older in Osaka decreased. Such time-dependent variation in the CFR was not seen among younger patients < 70 years old. With the Omicron variant, the CFR among the 80s and older in Tokyo and Osaka was 3.2% (95% CI 3.0 to 3.5) and 2.9% (95% CI 2.7 to 3.1), respectively.ConclusionWe found that without substantial control, the CFR can increase when a surge in cases occurs with an identifiable elevation in risk—especially among older people. Because active treatment options including admission to ICU cannot be offered to the elderly with an overwhelmed medical service, the CFR value can potentially double compared with that in other areas of health care under less pressure.
Read full abstract