The substituted triphenylethylene antiestrogen clomiphene (CLO) prevents cancellous bone loss in ovariectomized (OVX'd) rats. However, CLO is a mixture of two stereoisomers, enclomiphene (ENC) and zuclomiphene (ZUC), which have distinctly different activities on reproductive tissues and tumor cells. The purpose of the present dose response study was to determine the effects of ENC and ZUC on nonreproductive estrogen target tissues. These studies were performed in 7-month-old female rats with moderate cancellous osteopenia that was established by ovariectomizing rats 1 month before initiating treatment. OVX resulted in increases in body weight, serum cholesterol, endocortical resorption, and indices of cancellous bone turnover, as well as decreases in uterine weight, uterine epithelial cell height, bone mineral density, bone strength, and cancellous bone area. Estrogen treatment for 3 months restored body weight, uterine histology, dynamic bone measurements, and osteoblast and osteoclast surfaces in OVX'd rats to the levels found in the age-matched sham-operated rats. In contrast, estrogen only partially restored cancellous bone volume and uterine weight, and it reduced serum cholesterol to subnormal values. CLO was a weak estrogen agonist on uterine measurements and a much more potent agonist on body weight, serum cholesterol, and dynamic bone measurements. CLO increased trabecular thickness in osteopenic rats and was the most effective treatment in improving cancellous bone volume and architecture. ZUC was a potent estrogen agonist on all tissues investigated and had dose-dependent effects. In contrast, ENC had dose-dependent effects on most measurements similar to CLO and decreased the uterotrophic effects of ZUC. It is concluded that ENC antagonizes the estrogenic effects of ZUC on the uterus but that the beneficial effects of CLO on nonreproductive tissues in OVX'd rats is conferred by both isomers. Furthermore, the combined actions of the two isomers on bone volume and architecture were more beneficial than either isomer given alone.
Read full abstract