Abstract
The mechanical status of bones is an important consideration in skeletal pathological conditions such as osteoporosis, which result in fracture at predominantly cancellous bone sites. Density is a good predictor of the stiffness and strength of cancellous bone. However, these mechanical properties are also dependent on the cancellous bone's architecture. The objective of this work was to investigate the ability of ultrasound velocity to predict the Young's modulus of elasticity of cancellous bone. The cancellous bone specimens were 20 mm cubes from bovine femur and 21 mm diameter mediolateral cylinders cored from human calcaneus. Ultrasound velocity ( V) and Young's modulus ( E) were determined in three orthogonal directions for the bovine cubes [anteroposterior (AP), mediolateral (ML), and proximodistal (PD)], and mediolaterally in the calcaneus. Apparent density (ϱ) was determined after the other tests. Density alone explains 87.6% of the variance of Young's modulus in human calcaneal and bovine femoral bone tested in the PD direction only. Velocity, however, explains 95% and a combination of density and velocity 97%. Velocity and stiffness are not random with respect to the three directions in the bovine specimens. Further, for each cube we obtained the mean of the three values of E and of V, and characterized each value of E and V by their deviation from their mean. There is an extremely strong positive correlation ( r = 0.80) showing that the degree of deviation is consistent for E and V, and of the same sign. These results demonstrate that the velocity of ultrasound in cubes of cancellous bone can give structure-specific information. In particular, knowledge of both density and velocity allows better predictions of stiffness than do density or ultrasound velocity on their own. Because there are noninvasive methods of measuring density that do not depend on ultrasonic measurement the combination of these two measurements promises, eventually, to give improved assessment of a bone's weakness and liability to fracture.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have