In this study, we prepared 4-chlorophenylazoquinoline, a derivative of 8-hydroxyquinoline, with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions to create metal complexes. We used various physical and spectroscopic methods to characterize the compound and its metal complexes, including molar conductivity measurements, melting point analysis, elemental analysis, electronic absorption spectroscopy, mass spectrometry, magnetic resonance spectroscopy, infrared spectroscopy, and thermogravimetric analysis. The octahedral geometry of all prepared complexes has been confirmed. To assess the antimicrobial activity, we examined two types of bacterial strains and two types of fungal strains. The antimicrobial activity of the prepared compounds was observed, and the higher increase was observed in the copper complex. The compounds were studied computationally after optimizing the angles, lengths, and bonds using the basic set 6-31G(d,p)/LANL2DZ. The molecular docking study of the compounds with the Alzheimer's disease protein 4BDT showed significant activity in binding to the amino acids of HL, C1, C2, C3, C4, and C5 compounds, with affinity energies of -6.4, -6.9, -6.9, -6.7, and -7.2 kcal.mol-1 for the compounds, respectively. To evaluate the safety of the prepared compounds in different drug designs, we employed the ADMET study, reducing the risk of failure in advanced drug design stages. The results of the ADMET showed a relative decrease in the toxicity and carcinogenicity factor. However, there are indications of metabolic risk and cellular uptake, requiring further study.
Read full abstract