Abstract
Viticulture has adapted foliar applications of biostimulants as a tool to improve crop quality. Recently, nanotechnology has been incorporated as a strategy to reduce the loss of biostimulants and treat nutrient deficiencies. Therefore, the present study aimed to investigate the effect of foliar applications of amorphous calcium phosphate nanoparticles (ACP) doped with methyl jasmonate (ACP-MeJA) and urea (ACP-Ur), individually or together (ACP-MeJA+Ur), on the content of volatile compounds in 'Tempranillo' grapes, compared to the conventional application of MeJA and Ur, individually or in combination (MeJA+Ur). The results showed that nanoparticle treatments reduced the total C6 compounds and some carbonyl compounds in the grape musts. This is of novel interest because their presence at high levels is undesirable to quality. In addition, some aroma-positive compounds such as nerol, neral, geranyl acetone, β-cyclocitral, β-ionone, 2-phenylethanal and 2-phenylethanol increased, despite applying MeJA and Ur at a lower dose. Consequently, although few differences in grape volatile composition were detected, nanotechnology could be an option for improving the aromatic quality of grapes, at the same time as reducing the required doses of biostimulants and generating more sustainable agricultural practices. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.