BackgroundOsteoporotic fracture (OPF) is one of the most common skeletal diseases in an aging society. The Chinese medicine formula Buzhong Yiqi Decoction (BZYQD) is commonly used for treating OPF. However, the essential bioactive compounds and the underlying molecular mechanisms that promote fracture repair remain unclear.MethodsWe used network pharmacology and experimental animal validation to address this issue. First, 147 bioactive BZYQD compounds and 32 target genes for treating OPF were screened and assessed. A BZYQD-bioactive compound-target gene-disease network was constructed using the Cytoscape software. Functional enrichment showed that the candidate target genes were enriched in oxidative stress- and inflammation-related biological processes and multiple pathways, including nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, an OPF rat model was established and treated with BZYQD.ResultsThe results revealed that BZYQD ameliorated OPF characteristics, including femoral microarchitecture, biomechanical properties, and histopathological changes, in a dose-dependent manner. Results of enzyme-linked immunosorbent assay showed that BZYQD reduced the serum’s pro-inflammatory cytokines [Tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-1β, and IL-6] and improved oxidative stress-related factors [glutathione (GSH) and superoxide dismutase (SOD)]. BZYQD significantly decreased the protein expression of NF-κB in OPF rat femurs, suppressed NF-κB activation, and activated the nuclear factor-erythroid factor 2-related factor (Nrf2)/heme oxygenase 1 (HO-1) and p38 MAPK as well ERK pathways.ConclusionsOur results suggest that BZYQD could improve inflammation and oxidative stress during fracture repair by suppressing NF-κB and activating Nrf2/MAPK signaling pathways.
Read full abstract