ABSTRACT Hand motion detection is particularly important for managing the movement of individuals who have limbs amputated. The existing algorithm is complex, time-consuming and difficult to achieve better accuracy. A DNN is suggested to recognize human hand movements in order to get over these problems.Initially, the raw input EMG signal is captured then the signal is pre-processed using high-pass Butterworth filter and low-pass filter which is utilized to eliminate the noise present in the signal. After that pre-processed EMG signal is segmented using sliding window which is used for solving the issue of overlapping. Then the features are extracted from the segmented signal using Fast Fourier Transform. Then selected the appropriate and optimal number of features from the feature subset using coot optimization algorithm. After that selected features are given as input for deep neural network classifier for recognizing the hand movements of human. The simulation analysis shows that the proposed method obtain 95% accuracy, 0.05% error, precision is 94%, and specificity is 92%.The simulation analysis shows that the developed approach attain better performance compared to other existing approaches. This prediction model helps in controlling the movement of amputee patients suffering from disable hand motion and improve their living standard.
Read full abstract