Abstract
With the continuous development of sensor and computer technology, human-computer interaction technology is also improving. Gesture recognition has become a research hotspot in human-computer interaction, sign language recognition, rehabilitation training, and sports medicine. This paper proposed a method of hand gestures recognition which extracts the time domain and frequency domain features from surface electromyography (sEMG) by using an improved multi-channels convolutional neural network (IMC-CNN). The 10 most commonly used hand gestures are recognized by using the spectral features of sEMG signals which is the input of the IMC-CNN model. Firstly, the third-order Butterworth low-pass filter and high-pass filter are used to denoise the sEMG signal. Secondly, effective sEMG signal segment from denoised signal is applied. Thirdly, the spectrogram features of different channels’ sEMG signals are merged into a comprehensive improved spectrogram feature which is used as the input of IMC-CNN to classify the hand gestures. Finally, the recognition accuracy of IMC-CNN model, three single channel CNN of IMC-CNN model, SVM, LDA, LCNN and EMGNET are compared. The experiment was carried out on the same dataset and the same computer. The experimental results showed that the recognition accuracy, sensitivity and accuracy of the proposed model reached 97.5%, 97.25% and 96.25% respectively. The proposed method not only has high average recognition accuracy on MYO collected dataset, but also has high average recognition accuracy on NinaPro DB5 dataset. Overall, the proposed model has more advantages in accuracy and efficiency than that of the comparison models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.