Abstract

As an important indicator of human health, heart rate is related to the diagnosis of cardiovascular diseases. In recent years, extracting the heart rate from the mobile phone image has become a research hotspot. However, the illumination intensity of the background, frame rate of the video, and resolution of the image influence heart rate detection accuracy. To overcome these problems, this study proposed a novel heart rate extraction method based on mobile video. Firstly, the mobile phone camera is engaged to record the finger video, the region of interest (ROI) is extracted through the iterative threshold, and the pulse signal is obtained according to the grayscale change of the resolution within the ROI. Then, a low-pass and a high-pass Butterworth filters are exploited to filter out the noise and interframes from the extracted pulse signal. Finally, an improved adaptive peak extraction algorithm is proposed to detect the pulse peaks and the heart rate derived from the difference in pulse peaks. The experimental results show that light intensity, frame rate and resolution all have an influence on the heart rate extraction accuracy, with the most obvious influence of light, the average accuracy of the experiment can reach 99.32% under good lighting conditions, while only 72.23% under poor lighting conditions. In terms of frame rate, increasing the frame rate from 30fps to 60fps, the accuracy is improved by 0.9%. For the resolution, increasing the resolution from 1080p to 2160p, the accuracy is improved by 1.12%. While comparing the proposed method with existing methods, the proposed method has a higher accuracy rate, which has important practical value and application prospects in telemedicine and daily monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.