Background: Punjab (India) an agricultural state with twelve major crops sown round the year, produces 14.53 MT as crop residue. This huge quantity of crop residue poses a serious problem of stubble burning in the fields, leading to an alarming level of air pollution across the state, along with a potential loss of fuel usable for power generation. About 1000 MW of electricity can be generated from this crop residue by the proper utilization (Singh et al. 2015). Methods: Characteristics of various crop residues were evaluated experimentally and further investigations have been carried out to study the performance of producer gas derived from mustard stalk using a downdraft gasifier in combination with diesel oil in dual fuel diesel engine, where effect of various input parameters such as type of fuel, equivalence ratio and load on engine were studied on emission component SO2. Results were modeled and optimized through central composite design (CCD) of response surface methodology (RSM) using design of experiments technique to determine the most desirable mode of utilization. Result: It has been found that fixed carbon (40.55%), sulphur (0.367%), moisture contents (6.88%) and nitrogen contents (1.314%) in mustard stalk is almost same as in coal, where as hydrogen (6.124%), oxygen (43.965%), volatile matter (68.93%), gross calorific values (3933 kcal/kg) of mustard stalk are more and ash content (6.65%) is less as compared to corresponding values for coal. In all the three modes of operations, SO2 increases with increase in load on the engine. ER has no effect in diesel alone mode but in dual modes with increase in ER further increases SO2 as high temperature producer gas and air along with sulphur enters the engine which further increases the value of SO2.
Read full abstract