The electromigration behavior of 80μm bump pitch C2 (Chip Connection) interconnection is studied and discussed. C2 is a peripheral ultra fine pitch flip chip interconnection technique with solder capped Cu pillar bumps formed on Al pads that are commonly used in wirebonding technique. It allows us an easy control of the space between dies and substrates simply by varying the Cu pillar height. Since the control of the collapse of the solder bumps is not necessary, the technology is called the “C2 (Chip Connection)”. C2 bumps are connected to OSP surface treated Cu substrate pads on an organic substrate by reflow with no-clean process, hence the C2 is a low cost ultra fine pitch flip chip interconnection technology. The reliability tests on the C2 interconnection including thermal cycle tests and thermal humidity bias tests have been performed previously. However the reliability against electromigration for such small flip chip interconnections is yet more to investigate. The electromigration tests were performed on 80μm bump pitch C2 flip chip interconnections. The interconnections with two different solder materials were tested: Sn-2.5Ag and Sn100%. The effect of Ni layers electroplated onto the Cu pillar bumps on electromigration phenomena is also studied. From the cross-sectional analyses of the C2 joints after the tests, it was found that the presence of intermetallic compound (IMC) layers reduces the atomic migration of Cu atoms into Sn solder. The analyses also showed that the Ni layers are effective in reducing the migration of Cu atoms into solder. In the C2 joints, the under bump metals (UBMs) are formed by sputtered Ti/Cu layers. The electro-plated Cu pillar height is 45μm and the solder height is 25μm for 80μm bump pitch. The die size is 7.3-mm-square and the organic substrate is 20-mm-square with a 4 layer-laminated prepreg with thickness of 310μm. The electromigration test conditions ranged from 7 to 10 kA/cm2 with temperature ranging from 125 to 170°C. Intermetallic compounds (IMCs) were formed prior to the test by aging process of 2,000hours at 150°C. We have studied the effect of IMC layers on electromigration induced phenomena in C2 flip chip interconnections on organic substrates. The study showed that the IMC layers in the C2 joints formed by aging process can act as barrier layers to prevent Cu atoms from diffusing into Sn solder. Our results showed potential for achieving electromigration resistant joints by IMC layer formation. The FEM simulation results show that the current densities in the Cu pillar and the solder decrease with increasing Cu pillar height. However an increase in Cu pillar height also leads to an increase in low-k stress. It is important to design the Cu pillar structure considering both the electromigration performance and the low-k stress reduction.