Ash dieback (ADB), driven by the invasive fungus Hymenoscyphus fraxineus, poses a significant environmental and financial risk throughout Europe. Fraxinus excelsior (European ash), an essential part of forest ecosystems, has seen death rates as high as 85% in impacted areas, threatening its ecological roles and economic importance. This study examines the relationship between the phenological traits of ash clones, particularly the timing of spring bud burst, and their susceptibility to H. fraxineus infection. The study was conducted in a clonal seed orchard located in Northeastern Poland, encompassing 31 ash clones from different bioclimatic regions. Phenological analyses of bud burst were carried out from early April to late May during the years 2018–2020, and crown damage and defoliation levels were assessed multiple times throughout the growing season. The results confirm that clones with earlier bud burst exhibit significantly higher survival rates and reduced crown damage. Observations revealed that clones with earlier bud burst showed a 30% higher survival rate and up to 40% less crown damage compared to clones with later phenology. The timing of bud burst was strongly correlated with susceptibility to ash dieback (R2 = 0.37, p < 0.001). Statistical analyses, including ANOVA and mixed models, revealed significant differences in susceptibility to infection among clones from different bioclimatic regions. These findings underscore the importance of biological timing as a key factor in selecting genotypes resilient to ash dieback. The study highlights the potential of breeding approaches that focus on early bud burst traits to enhance the survival and vitality of ash populations. The results provide essential insights for developing adaptive forest management practices aimed at conserving ash resources and maintaining biodiversity in the face of climate change and the ongoing spread of the pathogen.
Read full abstract