A model study was carried out to elucidate bubble and liquid flow characteristics in the reactor of metals refining processes stirred by gas injection. Wood’s metal with a melting temperature of 70 °C was used as the model of molten metal. Helium gas was injected into the bath through a centered single-hole bottom nozzle to form a vertical bubbling jet along the centerline of the bath. The bubble characteristics specified by gas holdup, bubble frequency, and so on were measured using a two-needle electroresistivity probe, and the liquid flow characteristics, such as the axial and radial mean velocity components, were measured with a magnet probe. In the axial region far from the nozzle exit, where the disintegration of rising bubbles takes place and the radial distribution of gas holdup follows a Gaussian distribution, the axial mean velocity and turbulence components of liquid flow in the vertical direction are predicted approximately by empirical correlations derived originally for a water-air system, although the physical properties of the two systems are significantly different from each other. Under these same conditions, those turbulent parameters in high-temperature metals refining processes should thus be accurately predicted by the same empirical correlations.