Abstract
The thermal accretion (or mushroom) which is formed around the tuyere in steelmaking plants was simulated by a cold model and its formation process was observed. Single- and multi-hole nozzles were used for gas injection. The multi-hole nozzle was an artificial mushroom-like nozzle. The bubble and flow characteristics were investigated using an electrical resistivity probe and the laser Doppler velocimeter system. The process of thermal accretion formation consists of the following three stages: (1) generation of a core; (2) separation of the core and regeneration of another core; and (3) steady growth of the accretion. The shape of the thermal accretion and the bubble characteristics changed with each stage, depending on the thermal conductivity of the material of the nozzle. The bubble and liquid flow characteristics for the multi-hole nozzle were examined in comparison with those for the single-hole nozzle. The following results were obtained: (1) the bubbling jet generated by the multi-hole nozzle spread more widely in the radial direction than that generated by the single-hole nozzle; and (2) the circulation flow rate for the former nozzle was 33% larger than that for the latter nozzle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.