Vegetation productivity, as the basis of the material cycle and energy flow in an ecosystem, directly reflects the information of vegetation change. At the ecosystem level, the gross primary productivity (GPP) refers to the amount of organic carbon fixed by plant bodies. How to accurately estimate the spatiotemporal variation of vegetation productivity of the forest ecosystem in the Altay Mountains in northwest China has become a critical issue to be addressed. The Altay Mountains, with rich forest resources, are located in a semi-arid climate zone and are sensitive to global climate changes, which will inevitably have serious impacts on the function and structure of forest ecosystems in northwest China. In this paper, to reveal the variation trends of vegetation gross primary productivity (GPP) and its response to surface meteorological factors in the Altay Mountains in northwest China, daily temperature and precipitation data from the period of 2000–2017 were collected from seven meteorological stations in Altay prefecture and its surrounding areas; the data were analyzed by using the MODIS GPP model, moving average trend analysis, linear regression analysis and the climate tendency rate method. The results show that: (1) The spatial distribution pattern of GPP in the whole year was almost the same as that in the growing season of vegetation in the Altay Mountains. In the whole mountain range, the proportion of the area which had a GPP value of 400–600 g c/m2 had the highest value; the proportion of the annual and growing season of this area was 41.10% and 40.88%, respectively, which was mainly distributed in the middle and west alpine areas of the Altay Mountains. (2) There was a big gap in the GPP value in the different stages of the vegetation growing season (April to September), which reached the highest value in July, the area with a GPP of 100–150 g c/m2 was the highest, with 36.15%. (3) The GPP of the Altay Mountains showed an overall increasing trend, but the annual fluctuation was relatively large. In 2003, 2008, 2009 and 2014, the GPP showed lower values, which were 385.18 g c/m2, 384.90 g c/m2, 384.49 g c/m2 and 393.10 g c/m2, respectively. In 2007, 2011 and 2016, the GPP showed higher values, which were 428.49 g c/m2, 428.18 g c/m2 and 446.61 g c/m2. (4) In 64.85% of the area of the Altay Mountains, the GPP was positively correlated with annual average temperature, and in 36.56% of the area, the correlation coefficient between temperature and GPP ranged from −0.2 to 0. In 71.61% of the area of the Altay Mountains, the GPP was positively correlated with annual accumulated precipitation, and in 28.39% of the area, the GPP was negatively correlated with annual accumulated precipitation. Under the scenario of global climate change, our study has quantitatively analyzed the long-term dynamics of vegetation GPP and its responses to meteorological factors in the Altay Mountains, which would be helpful for evaluating and estimating the variation trends of forest ecosystems in China, and has important guiding significance for policy formulation to protect forest resources and improve the local ecological environment.
Read full abstract