Abstract

Nickel (Ni) is an essential trace element for plant growth and a component of the plant body that has many different functions in plants. Although it has been confirmed that nickel ions (Ni2+) havea certain regulatory effect on nitrogen (N) metabolism, there are not enough data to prove whether exogenous Ni2+ can increase the carbon (C) and N metabolism in the roots of tomato seedlingsunder low-nitrogen (LN) conditions. Therefore, through the present experiment, we revealed the key mechanism of Ni2+-mediated tomato root tolerance to LN levels. Tomato plants were cultured at two different N levels (7.66 and 0.383 mmol L−1) and two different Ni2+ levels (0 and 0.1 mg L−1 NiSO4 6H2O) under hydroponic conditions. After nine days, we collected roots for physiological, biochemical, and transcriptome sequencing analyses and found that the activities of N assimilation-related enzymes decreased at LN levels. In contrast, Ni2+ significantly increased the activities of N assimilation-related enzymes and increased the contents of nitrate (NO3−), ammonium (NH4+), and total amino acids. Through root transcriptomic analysis, 3738 differentially expressed genes (DEGs) were identified. DEGs related to C and N metabolism were downregulated after LN application. However, after Ni2+ treatment, PK, PDHB, GAPDH, NR, NiR, GS, GOGAT, and other DEGs related to C and N metabolism were significantly upregulated. In conclusion, our results suggest that Ni2+ can regulate the C and N metabolism pathways in tomato roots to alleviate the impact of LN levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.