Abstract

When the microscope was first introduced to scientists in the 17th century, it started a revolution. Suddenly, a whole new world, invisible to the naked eye, was opened to curious explorers. In response to this realization, Nehemiah Grew, an English plant anatomist and physiologist and one of the early microscopists, noted in 1682 "that Nothing hereof remains further to be known, is a Thought not well Calculated". Since Grew made his observations, the microscope has undergone numerous variations, developing from early compound microscopes-hollow metal tubes with a lens on each end-to the modern, sophisticated, out-of-the-box super-resolution microscopes available to researchers today. In this Overview article, I describe these developments and discuss how each new and improved variant of the microscope led to major breakthroughs in the life sciences, with a focus on the plant field. These advances start with Grew's simple and-at the time-surprising realization that plant cells are as complex as animals cells, and that the different parts of the plant body indeed qualify to be called "organs", then move on to the development of the groundbreaking "cell theory" in the mid-19th century and the description of eu- and heterochromatin in the early 20th century, and finish with the precise localization of individual proteins in intact, living cells that we can perform today. Indeed, Grew was right; with ever-increasing resolution, there really does not seem to be an end to what can be explored with a microscope. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call