To treat large intracranial aneurysms, pipeline embolization device (PED) stent with unsupervised learning algorithms was utilized. Unsupervised learning model algorithm was used to screen aneurysm health big data, find aneurysm blood flow and PED stent positioning characteristic parameters, and guide PED stent treatment of intracranial aneurysms. The research objects were 100 patients with intracranial large aneurysm admitted to X Hospital of X Province from June 2020 to June 2021, who were enrolled into two groups. One group used the prototype transfer generative adversarial network (PTGAN) model to measure mean blood flow and mean vascular pressure and guide the placement of PED stents (PTGAN group). The other group did not use the model to place PED (control group). The PTGAN model can learn feature information from horizontal and vertical directions, with smooth edges and prominent features, which can effectively extract the main morphological and texture features of aneurysms. Compared with the convolutional neural network (CNN) model, the accuracy of the PTGAN model increased by 8.449% (87.452%–79.003%), and the precision increased by 8.347% (91.23%–82.883%). The recall rate increased by 7.011% (87.231%–80.22%), and the F1 score increased by 8.09% (89.73%–81.64%). After the adoption of the PTGAN model, the average blood flow inside the aneurysm body was 0.22 (m/s). After the adoption of the CNN model, the average blood flow inside the aneurysm body was 0.21 (m/s), and the difference was 0.01 (m/s), which was considerable (p < 0.05). Through this research, it was found that the PTGAN model was better than the CNN model in terms of accuracy, precision, recall, and F1 score values. The PTGAN model was better than the CNN model in detecting the average blood flow rate and average blood pressure after treatment, and the blood flowed smoothly. Postoperative complications and postoperative relief were also better than those of the control group. In summary, based on the unsupervised learning algorithm, the PED stent had a good adoption effect in the treatment of intracranial aneurysms and was suitable for subsequent treatment.