Abstract

We use computational fluid dynamics (CFD) to simulate blood flow in intracranial aneurysms (IAs). Despite ongoing improvements in the accuracy and efficiency of body-fitted CFD solvers, generation of a high quality mesh appears as the bottleneck of the flow simulation and strongly affects the accuracy of the numerical solution. To overcome this drawback, we use an immersed boundary method. The proposed approach solves the incompressible Navier-Stokes equations on a rectangular (box) domain discretized using uniform Cartesian grid using the finite element method. The immersed object is represented by a set of points (Lagrangian points) located on the surface of the object. Grid local refinement is applied using an automated algorithm. We verify and validate the proposed method by comparing our numerical findings with published experimental results and analytical solutions. We demonstrate the applicability of the proposed scheme on patient-specific blood flow simulations in IAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call