Previous article Next article The Block Symmetric Successive Overrelaxation MethodLouis W. EhrlichLouis W. Ehrlichhttps://doi.org/10.1137/0112068PDFPDF PLUSBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] R. J. Arms, , L. D. Gates and , B. Zondek, A method of block iteration, J. Soc. Indust. Appl. Math., 4 (1956), 220–229 10.1137/0104012 MR0119405 0077.32502 LinkISIGoogle Scholar[2] E. D'Sylva and , G. A. Miles, The S.S.O.R. iteration scheme for equations with $\sigma \sb{1}$ ordering, Comput. J., 6 (1963/1964), 366–367 MR0158549 0134.32704 CrossrefISIGoogle Scholar[3] L. W. Ehrlich, Masters Thesis, The block symmetric successive overrelaxation method, doctoral thesis, University of Texas, Austin, 1963 Google Scholar[4] M. Engeli, , Th. Ginsburg, , H. Rutishauser and , E. Stiefel, Refined iterative methods for computation of the solution and the eigenvalues of self-adjoint boundary value problems, Mitt. Inst. Angew. Math. Zürich. No., 8 (1959), 107– MR0145689 0089.12103 Google Scholar[5] D. J. Evans and , C. V. D. Forrington, An iterative process for optimizing symmetric successive over-relaxation, Comput. J., 6 (1963), 271–273 0127.08202 CrossrefISIGoogle Scholar[6] George E. Forsythe and , Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons Inc., New York, 1960x+444 MR0130124 0099.11103 Google Scholar[7] G. J. Habetler and , E. L. Wachspress, Symmetric successive overrelaxation in solving diffusion difference equations, Math. Comp., 15 (1961), 356–362 MR0129139 0102.11403 CrossrefGoogle Scholar[8] Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953x+274 MR0059056 0051.34602 Google Scholar[9] W. Kahn, Masters Thesis, Gauss-Seidel methods of solving large systems of linear equations, doctoral thesis, University of Toronto, Toronto, 1958 Google Scholar[10] John W. Sheldon, On the numerical solution of elliptic difference equations, Math. Tables Aids Comput., 9 (1955), 101–112 MR0074929 0065.35801 CrossrefGoogle Scholar[11] J. W. Sheldon, A. Ralston and , H. S. Wilf, Iterative methods for the solution of elliptic partial differential equationsMathematical methods for digital computers, Wiley, New York, 1960, 144–156 MR0117919 Google Scholar[12] Richard S. Varga, Matrix iterative analysis, Prentice-Hall Inc., Englewood Cliffs, N.J., 1962xiii+322 MR0158502 0133.08602 Google Scholar[13] David Young, Iterative methods for solving partial difference equations of elliptic type, Trans. Amer. Math. Soc., 76 (1954), 92–111 MR0059635 0055.35704 CrossrefISIGoogle Scholar[14] David Young, On Richardson's method for solving linear systems with positive definite matrices, J. Math. Physics, 32 (1954), 243–255 MR0060306 0055.11202 CrossrefISIGoogle Scholar[15] David Young, J. Todd, The numerical solution of elliptic and parabolic partial differential equationsSurvey of numerical analysis, McGraw-Hill, New York, 1962, 380–438 MR0136084 Google Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails Some History of the Conjugate Gradient and Lanczos Algorithms: 1948–1976SIAM Review, Vol. 31, No. 1 | 2 August 2006AbstractPDF (6558 KB)Block Preconditioning for the Conjugate Gradient MethodSIAM Journal on Scientific and Statistical Computing, Vol. 6, No. 1 | 31 July 2006AbstractPDF (2675 KB)A Survey of Modern Numerical AnalysisSIAM Review, Vol. 15, No. 2 | 2 August 2006AbstractPDF (2464 KB) Volume 12, Issue 4| 1964Journal of the Society for Industrial and Applied Mathematics687-909 History Submitted:24 February 1964Published online:13 July 2006 InformationCopyright © 1964 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0112068Article page range:pp. 807-826ISSN (print):0368-4245ISSN (online):2168-3484Publisher:Society for Industrial and Applied Mathematics