Abstract

SUMMARY Soil–structure interaction problems are commonly encountered in geotechnical practice and remarkably characterized with significant material stiffness contrast. When solving the soil–structure interaction problems, the employed Krylov subspace iterative method may converge slowly or even fail, indicating that the adopted preconditioning method may not suit for such problems. The inexact block diagonal preconditioners proposed recently have been shown effective for the soil–structure interaction problems; however, they haven't been exploited to full capabilities. By using the same partition strategy according to the structure elements and soil elements, the partitioned block symmetric successive over-relaxation preconditioners or partitioned block constraint preconditioners are proposed. Based on two pile-group foundation problems and a tunnel problem, the proposed preconditioners are evaluated and compared with the available preconditioners for the consolidation analysis and the drained analysis, respectively. In spite of one additional solve associated with the structure block and multiplications with off-diagonal blocks in the preconditioning step, numerical results reveal that the proposed preconditioners obviously possess better performance than the recently developed inexact block preconditioners. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call