Abstract
In order to solve the large sparse systems of linear equations arising from numerical solutions of two-dimensional steady incompressible viscous flow problems in primitive variable formulation, Ran and Yuan [On modified block SSOR iteration methods for linear systems from steady incompressible viscous flow problems, Appl. Math. Comput. 217 (2010), pp. 3050–3068] presented the block symmetric successive over-relaxation (BSSOR) and the modified BSSOR iteration methods based on the special structures of the coefficient matrices. In this study, we present the modified alternating direction-implicit (MADI) iteration method for solving the linear systems. Under suitable conditions, we establish convergence theorems for the MADI iteration method. In addition, the optimal parameter involved in the MADI iteration method is estimated in detail. Numerical experiments show that the MADI iteration method is a feasible and effective iterative solver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.