We present a new numerical technique, the Gegenbauer homotopy analysis method, which allows for the construction of iterative solutions to nonlinear differential equations. This technique is a numerical extension of the semi-analytic homotopy analysis method that exhibits spectral convergence while performing sparse matrix operations in Gegenbauer space. This technique is used to present solutions to the Falkner--Skan equation, a well known problem in boundary layer fluid dynamics. These solutions are compared to previously published works, and the convergence properties exhibited by this new technique are considered. References N. S. Asaithambi. A numerical method for the solution of the Falkner–Skan equation. Applied Mathematics and Computation , 81 :259–264, 1997. doi:10.1016/S0096-3003(95)00325-8 H. Blasius. Grenzschichten in flussigkeiten mit kleiner reibung. Zeitschrift fur Angewandte Mathematik und Physik , 56 :1–37, 1908. T. Cebeci and H. B. Keller. Shooting and parallel shooting methods for solving the Falkner–Skan boundary-layer equation. Journal of Computational Physics , 7 :289–300, 1971. doi:10.1016/0021-9991(71)90090-8 V. M. Falkner and S. W. Skan. Some approximate solutions of the boundary layer equations. Philosophical Magazine , 12 :865–896, 1930. R. Fazio. Blasius problem and Falkner–Skan model: Topfer's algorithm and its extension. Computers and Fluid , 75 :202–209, 2013. doi:10.1016/j.compfluid.2012.12.012 S. J. Liao. The proposed homotopy analysis technique for the solution of nonlinear problems . PhD thesis, Shanghai Jiao Tong University, 1992. S. S. Motsa, G. T. Marewo, P. Sibanda and S. Shateyi. An improved spectral homotopy analysis method for solving boundary layer problems. Boundary Value Problems , 2011(1) :3, 2011. doi:10.1186/1687-2770-2011-3 S. Olver and A. Townsend. A fast and well-conditioned spectral method. SIAM Review , 55(3) :462–489, 2013. doi:10.1137/120865458 S. M. Rassoulinejad-Mousavi and S. Abbasbandy. Analysis of forced convection in a circular tube filled with a Darcy–Brinkman–Forcheimer porous medium using spectral homotopy analysis method. Journal of Fluids Engineering , 133(10) :101207–101207–9, 2011. doi:10.1115/1.4004998 H. Saberi Nik, S. Effati, S. S. Motsa, and M. Shirazian. Spectral homotopy analysis method and its convergence for solving a class of nonlinear optimal control problems. Numerical Algorithms , 65(1) :171–194, 2014. doi:10.1007/s11075-013-9700-4