Abstract

Purpose – The purpose of this paper is to propose a reliable treatment for studying the Blasius equation, which arises in certain boundary layer problems in the fluid dynamics. The authors propose an algorithm of two steps that will introduce an exact solution to the equation, followed by a correction to that solution. An approximate analytic solution, which contains an auxiliary parameter, is obtained. A highly accurate approximate solution of Blasius equation is also provided by adding a third initial condition y ' ' (0) which demonstrates to be quite accurate by comparison with Howarth solutions. Design/methodology/approach – The approach consists of two steps. The first one is an assumption for an exact solution that satisfies the Blasius equation, but does not satisfy the given conditions. The second step depends mainly on using this assumption combined with the given conditions to derive an accurate approximation that improves the accuracy level. Findings – The obtained approximation shows an enhancement over some of the existing techniques. Comparing the calculated approximations confirm the enhancement that the derived approximation presents. Originality/value – In this work, a new approximate analytical solution of the Blasius problem is obtained, which demonstrates to be quite accurate by comparison with Howarth solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.