In recent years, there has been a growing and continuous demand for great (data rates) beyond existing wired and wireless networks. Radio-over-Fiber technology is considered as an efficient and practical solution for providing broadband wireless. In this paper, many techniques are used to implement a system that has the capability to provide a great bit rate, broadband bandwidth, and minimum cost. So Radio-over-Fiber technology was used to modulate the light with radio-signal and transmission the signals through an optical fiber cable. Wavelength-Division-Multiplexing technique was used to send many signals through the same link, and Subcarrier Multiplexing-Amplitude Shift keying as a modulation format. 2Gpbs separate on two channels was transmitted on Single-Mode Fiber. The average results obtained from our experience was as follows: maximum Q factor average = 4.9712925, minimum BER average = 3.63*10-7, total power average (dBm) = -51.1502, the OSNR average (dB) = 52.085 for channel_1. The results of channel_2 were: maximum Q factor average = 5.5901325, minimum BER average = 1.26*10-8, total power average (dBm) = -46.60135, the average of optical signal-to-noise ratio (dB) = 54.65. All the average result that has from our simulation was very good and acceptable. The simulation and performance test of our experience was done using Optisystem 7.0.
Read full abstract