Heterostructured materials composed of different semiconductors can be used to decrease rapid charge carrier recombination in photocatalysts, but the development of efficient synthesis methods for these materials remains a challenge. This work describes a novel strategy for tailoring heterostructures that is based on the solubility difference between two semiconductors with at least one metal in common. The growth of BiVO4 on a preformed Bi2O3 particle was used as a model for heterojunction formation. The number of Bi2O3/BiVO4 heterojunctions was tuned using synthesis variables (temperature and V concentration) and the particle size of the preformed Bi2O3. The synthesis of the Bi2O3/BiVO4 heterostructures using Bi2O3 nanoparticles resulted in a larger quantity of heterojunctions due to the higher solubility of the nanoparticles compared to micrometric Bi2O3, which led to a classical heterogeneous precipitation on the preformed surfaces. The proposed growth mechanism was effective for obtaining heterostruc...