Abstract

Polypyrrole-coated Bi2O3@CMK-3 nanocomposite is prepared by nanocasting technique and chemical polymerization method. Bi2O3 nanoparticles are dispersed into CMK-3 matrix, and polypyrrole is coated onto the surface of Bi2O3@CMK-3. Polypyrrole-coated Bi2O3@CMK-3 nanocomposite as an anode material for lithium-ion batteries has an outstanding power capability (321mAhg−1 at a current rate of 6Ag−1) and a significantly improved cycling ability (380mAhg−1 after 1000 cycles at a current rate of 5Ag−1). The greatly enhanced electrochemical performance of polypyrrole-coated Bi2O3@CMK-3 nanocomposite is associated with the synergistic effect of highly conductive CMK-3, polypyrrole layer and Bi2O3 nanoparticles. Such a configuration inhibits the aggregation of Bi2O3 nanoparticles and preserves the structure integrity of electrode material, in addition to highly improving the electrical conductivity and maintaining the stable structure of solid electrolyte interface film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call