Abstract

Bi2O3 nanoparticles are prepared by using a facile solution-based thermal decomposition method assisted by oleylamine. These Bi2O3 nanoparticles self assemble into nanobelts. The reaction time and temperature affect self-assembly behaviour of the Bi2O3 nanoparticles. Increasing the reaction time or temperature results in the larger size of nanoparticles, which leads to failure of formation of nanobelts. It is illustrated that oleylamine and the size of nanoparticles play key roles in the self-assembly of nanoparticles. Based on the experimental results, a formation mechanism of the self-assembled nanobelts was proposed and this method may be extended to fabrication of other metal oxide nanobelts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.