The strength of cold-drawn, titanium-gettered iron wires can be substantially increased by substitutional solutes. For the elements studied, strengthening is progressively less in the order Si, Pt, Mn, Ni, Cr, and Co. The strengthening effect of the solute increases with strain, but at a greatly diminishing rate for true strains greater than unity. Six at. pct Si reduces the strain necessary to achieve a tensile strength of 200,000 psi (1380 MN/m2) from 7.3 for iron to 3.7. This effect of alloying on strain hardening appears to be related to the strength of the annealed alloy rather than to the specific alloying element used to achieve that strength. Also, the reduction-of-area ductility of the drawn wires is more closely related to the tensile strength of the wire than to its alloy content or degree of cold work. A fibrous cellular substructure is formed in all the alloys, but the formation of these cells is displaced to higher strains, the greater the strengthening effect of the solute. The transition from homogeneously distributed, tangled dislocations to a cellular substructure has no effect on the rate of strain hardening of the alloy-alloying can be used effectively as a substitute for cold work without adversely affecting the resistance of the alloy to ductile failure.
Read full abstract