Since their introduction in form of a canonical representation of logical functions, the Binary Decision Diagrams (BDDs) gained a wide acceptance in numerous industrial applications. This paper summarizes the properties of BDD representation of Minimal Cut Sets (MCS) of Fault Tree (FT) models most typically encountered in nuclear energetics. Cut sets from MCS are defined as paths from the top BDD node to terminal nodes in the BDD, on which a quantitative and qualitative FT analysis (FTA) is performed. The core of the FTA on the BDDs is performed with help of two fundamental algorithms, one for conditional probability evaluation and another for the selection of cut sets. The accuracy of conditional probability evaluation represents an essential feature for an unbiased quantitative analysis, such as the top event probability or the determination of event importance measures. The cut set selection algorithm is shown in a generic version introducing logical predicates for its selection criteria. As it is known, the efficiency of depicted algorithms depends only on the number of BDD nodes used for the FT representation. In order to appraise the compactness of the BDD representation of FT models, their characteristics have herein been evaluated on several real-life models from the Nuclear Power Plant Krško. The extraordinariness of the compactness of the BDD representation reflects in its ability to implement advanced dynamic analysis (i.e. what-if) of FT models. The efficiency of such an approach is recognized by commercial vendors upgrading their FT Tools to new versions by implementing BDD based algorithms.